导数解析函数y=x^4-x^3+7x-7的性质及图像
1、 用导数工具解析函数的单调性,计算函数的一阶导数,即可计算出函数的驻点,判断驻点的符号,即可得到函数的单调性,进一步得到函数的单调区间。

4、二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍然是x的函数,则y'=f'(x)的导数叫作函数y=f(x)的二阶导数。
5、函数在0点和无穷处的极限,以及函数的五点示意图。

1、 用导数工具解析函数的单调性,计算函数的一阶导数,即可计算出函数的驻点,判断驻点的符号,即可得到函数的单调性,进一步得到函数的单调区间。
4、二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍然是x的函数,则y'=f'(x)的导数叫作函数y=f(x)的二阶导数。
5、函数在0点和无穷处的极限,以及函数的五点示意图。